Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles.
نویسندگان
چکیده
pH-Sensitive poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)/2-hydroxyethyl methacrylate (HEMA)) nanoparticles were prepared for the triggered release of paclitaxel within a tumor microenvironment. Tumors exhibit a lower extracellular pH than normal tissues. We show that paclitaxel release from DMAEMA/HEMA particles can be actively triggered by small, physiological changes in pH (within 0.2-0.6 pH units). Monodispersed nanoparticles were synthesized by forming an O/W emulsion followed by photopolymerization. Particles were characterized by transmission electron microscopy, dynamic light scattering, electrophoresis, and cytotoxicity. High release rates and swelling ratios are achieved at low pH, low crosslinking density, and high content of DMAEMA. Paclitaxel release is limited to 9% of the payload at pH 7.4 after a 2-h incubation at 37 degrees C. After adjusting to pH 6.8, 25% of the payload is released within 2h. Cell viability studies indicate that pH-sensitive DMAEMA/HEMA nanoparticles are not cytotoxic and may be used as an efficient, feedback-regulated drug delivery carrier.
منابع مشابه
Quaternary Ammonium Salts of Poly(N,N-dimethylaminoethyl methacrylate) as an Efficient Antibacterial Agent for Polylactide Textiles
متن کامل
Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate)-g-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity
BACKGROUND There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate)-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE)] copolymer was designed and synthesized to enable these nanoparticles to be pH responsiv...
متن کاملPentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies
Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP) for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate) (PF127-pDMAEMA), pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate) (PF127-p(DMAEMA-t...
متن کاملFormation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers
We present methodologies for fabricating block copolymer assemblies grafted onto flat solid substrates, where each block of the copolymer possesses a systematic and gradual variation of molecular weight as a function of the position on the substrate. We demonstrate the utility of this technique on two case studies. In the first project, we generate surface-tethered poly[(2-hydroxyethyl methacry...
متن کاملPersistent interactions between hydroxylated nanoballs and atactic poly(2-hydroxyethyl methacrylate)(PHEMA).
The incorporation of self-assembled nanoparticles, a.k.a. hydroxylated nanoballs, into poly(2-hydroxyethyl methacrylate)(PHEMA) gives rise to a cross-linked network/hydrogel with enhanced interfacial interaction, whereas its inclusion in poly(methyl methacrylate)(PMMA) results in plasticization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 29 12 شماره
صفحات -
تاریخ انتشار 2008